| Exploration
Contribution | Science Questions | | Objectives /
Investigations | Measurements | Observed Region | Spacecraft
Location | New
Instruments | Technology
Development | |--|---|------------|--|--|---|---|--|--| | Solar system analogue for extra-terrestrial planets. | How do solar
irradiance, solar wind
and their variability
control the
environments of the
Earth, Moon, Mars,
other planets comets
and other bodies in the
solar system? | 3c | Understand the variability of solar irradiance. | Spectral irradiance | Photosphere-
Corona | Earth, Heliosphere | GMM, MG2,
HEUV | S/N increase by 10-100
over GOLF; lightweight,
solar sails? | | | | | | Total irradiance | Photosphere- | Heliosphere | HTSI | light wieght < 4kg, solar | | | | | | Spatial dependence | Corona Photosphere- Corona | Earth | HTUVS,
HTEUVS,
HRNBI | sails? Gratings, active pixel sensors; Image stabilization | | | | 1f | Understand how the Sun
and solar wind control
planetary environments. | Solar wind plasma
magnetic field | Heliosphere | Planetary orbits | 111111111111111111111111111111111111111 | Sub-III Sub-II | | | | | | Magnetospheres Upper atmosphere structure | | | | | | Comparative
Astrospheres | What is the nature of
the boundary region
with the interstellar
medium? | 1d | Understand the interaction of the solar wind with the Interstellar Medium (ISM): interstellar gas, ENAs, and pick up ions. | Energetic particles | Heliosphere
Boundary Region | 1-5AU, in and out of ecliptic | energetic
particle analyzer | | | | | | | ENAs remote
sensing | Heliosphere
Boundary Region | >1AU, in and out
of ecliptic | ENA-L,M,H
Imagers | | | | | | | pick up ions | Heliosphere
Boundary Region | 1-4AU, in and out
of ecliptic | pickup ion
analyzer | | | | | | | Solar wind plasma
magnetic field | Heliosphere
Boundary Region | 1-4AU, in and out
of ecliptic | vector
magnetometer;
plasma analyzer | | | | | | | Interstellar neutrals | Heliosphere
Boundary Region | 1-4AU, in and out of ecliptic | | IMAGE, IBEX phaseA | | | | | | Solar EUV input to
Heliosphere | Heliosphere | Heliosphere | HEUV | light wieght, solar sails? | | | | | | Solar wind EUV | Heliosphere | 1-4AU, in and out | DEUS | low intrinsic noise | | | | | | Interstellar EUV | Boundary Region Heliosphere | of ecliptic 1>AU, in and out | DEUS | MCPs; diffraction
low intrinsic noise | | | | | | glow
Interplanetary and
interstellar dust | Boundary Region
Heliosphere
Boundary Region | of ecliptic
0.3-5AU, in and
out of ecliptic | Dust analyzer | MCPs; diffraction | | | | | | Radio Emissions | Heliosphere
Boundary Region | >10AU, in and out of ecliptic | Radio | | | | | | | Energetic particles | In situ Boundary
Region | 100-200AU | energetic
particle analyzer | | | | | | | ENAs remote | In situ Boundary | 100-200AU | ENA-L,M,H | IMAGE, IBEX phaseA, | | | | | | sensing
pick up ions | Region In situ Boundary Region | 100-200AU | Imager
pickup ion
analyzer | Cassini | | | | | | Solar wind plasma
magnetic field | In situ Boundary
Region | 100-200AU | vector
magnetometer;
plasma analyzer | | | | | | | Interstellar neutrals | In situ Boundary
Region | 100-200AU | | IMAGE, IBEX phaseA | | | | | | Interstellar EUV
glow | In situ Boundary
Region | 100-200AU | DEUS | low intrinsic noise
MCPs; diffraction | | | | | | Interplanetary and interstellar dust | In situ Boundary
Region | 100-200AU | Dust analyzer | WCI 5, difficulti | | | | | | Radio Emissions | In situ Boundary | 100-200AU | Radio | | | | | | Solar inputs to | Out of ecliptic | Region
Heliosphere | Heliosphere, out of | HEUV | Improved spectrographic | | Long-term Forecast of
Envelopes of Solar
Activity (for, e.g.,
Exploration design and
planning) | How are magnetic fields created and how do they evolve? | 1a | Understand the generation and transport of magnetic fields in the solar interior. | Flows and oscillations | Solar Interior /
photosphere | Earth | | | | | | 2a | Understand the interaction of convection, flows, rotation and magnetic field as they couple into the dynamo | Internal and
surface flows in
relation to
magnetic patterns | Solar interior /
photosphere | Earth | | | | | | | | | Stellar surface | Sun-Earth
Libration Point 2 | SI | formation flying, micro-
thrusters, metrology,
wave-front control | | | | | | Magnetic Field or | Solar surface | Earth | | formation flying, micro- | | | | | | proxy (UV/optical imaging) | Stellar atmosphere | Sun-Earth
Libration Point 2 | SI | thrusters, metrology,
wave-front control | | | How do we predict mid-
term solar activity and
the evolution of solar
disturbances as they
propagate into the
heliosphere and affect
Earth | 3a,f
3b | | Surface patterns of
emerging and | Solar photo-sphere
Stellar surfaces on | Earth
Sun-Earth | | formation flying, micro- | | | | | | dispersing
magnetic field | Sun-like stars | Libration Point 2 | SI | thrusters, metrology,
wave-front control | | | | | | Patterns of field
and surface flows
over long periods | Solar photosphere | Earth | | | | | | | | | Stellar surfaces | Sun-Earth
Libration Point 2 | SI | formation flying, micro-
thrusters, metrology,
wave-front control | | | | | | Global
heliospheric field | Heliospheric field
and solar wind | Heliosphere | Particle | |